السلسلة (2 - 3) السنة الدراسية: 2024/2023

مؤسسة الدعم البيداغوجي - تلمسان -

من اعداد الأستاذ: م.قيسي الموضوع: الظواهر الكهربائية المستوى: 3ع.ت +3 رياضي + 3 ت. رياضي

## <u>التمرين 1:</u>

نعتبر المكثفات من العناصر الكهربائية الأساسية التي تتدخل في تركيب الأجهزة الإلكترونية. تمثل الصورة المقابلة الشكل - 1 مكثفة تم استخراجها من جهاز الكتروني سعتها غير واضحة

مدون عليها (400V) من أجل معرفة سعتها C. نفرغها كليا ثم نركبها على التسلسل مع ناقل أومى

مقاومته  $R=12,5\Omega$  و مولد لتوتر ثابت قوته المحركة الكهربائية E=12V و بادلة كهربائية K، و أسلاك توصيل

كما هو موضح في الشكل - 2

نضع (1) عند اللحظة t=0 نضع البادلة في الوضع = I

المكثفة؛ -1 ماذا تعني الكتابة -1 المدونة على المكثفة؛

2 - أعد رسم الدارة موضحا عليها التوترات باسهم وجهة التيار الكهربائي.

 $u_{\scriptscriptstyle R}(t)$  بيّن على الدارة كيفية ربط راسم الاهتزاز لمشاهدة التوتر -3

التوتر الكهربائي  $u_R(t)$  هي:  $u_R(t)$  التوتر الكهربائي  $u_R(t)$ 

$$\frac{du_R(t)}{dt} + \frac{1}{RC}u_R(t) = 0$$

 $u_R(t) = Ae^{-\frac{t}{B}}$ : من الشكل المعادلة التفاضلية السابقة حلا من الشكل المعادلة التفاضلية السابقة حلا من الشكل حيث A و B ثابتين يطلب تعيين عبارتيهما بدلالة مميزات الدارة.

ب - أعط المدلول الفيزيائي للثابت A

ج - بالتحليل البعدي بيّن أنB متجانس مع الزمن ثم استنتج مدلوله الفيزيائي.

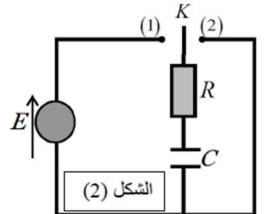
 $\ln(\frac{A}{u(t)})$  بواسطة برمجية مناسبة تمكنا من رسم بيان تغيرات – 6

بدلالة الزمن (t) كما هو موضح في الشكل (t) باستغلال البيان:

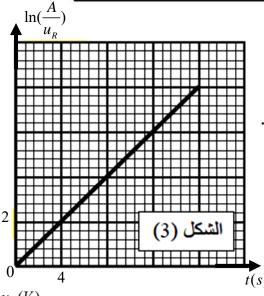
C عيمة الثابت B، ثم استنتج قيمة سعة المكثفة C

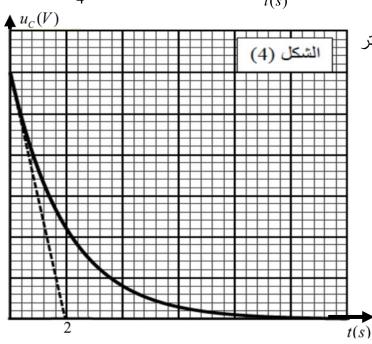
II - نضع البادلة في الوضع (2) و نعتبره مبدأ جديدا للأزمنة:

1 – ماهي الظاهرة التي تحدث للمكثفة؟ فسّر ذلك مجهريا.


2 - مكنت المتابعة الزمنية من رسم المنحنى البياني لتطور التوتر

بين لبوسي المكثفة بدلالة الزمن كما هو موضح في الشكل - 4


أ – جّد سعة المكثفة C.


ب - قارنها مع القيمة السابقة.

ج - أحسب الشدة الأعظمية للتيار يه المار في الدارة.



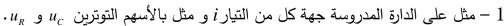
الشكل (1)





## التمرين 2:

نحقق التركيب التجريبي المبيّن في الشكل - 1 باستعمال التجهيز التالى:


🕏 مولد ذي توتر ثابت قوته المحركة

🖘 مكثفة سعتها C غير مشحونة.

 $R_2$  و  $R_1 = 1k\Omega$  ناقلین أومیین مقاومتها

الله k و أسلاك توصيل.

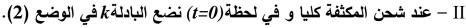
## البادلة k عند الوضع (1). المحظة (t=0) عند الوضع - I



i(t) اكتب المعادلة التفاضلية لتطور شدة التيار -2

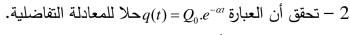
. حلا المعادلة التفاضلية 
$$i(t) = \frac{E}{R}e^{-\frac{t}{\tau_1}}$$
 التفاضلية - 3

.  $\tau_1 = R_1 C$  حيث عبارته الزمن عبارت


. 
$$R_{\rm I}$$
 عبارة التوتر  $u_{\rm R_{\rm I}}(t)$  بين طرفي الناقل الأومي - 4

. بيّن أن 
$$au_1 = R_1 C$$
 متجانسة مع الزمن – 5

$$\cdot \ln u_{R_1} = -\frac{1}{\tau_1}t + \ln E$$
 بيّن أن  $-6$ 


: 2 – مثلنا البيان 
$$\ln u_{R_{\rm l}}=f(t)$$
 الشكل – 7

.C و استنتج سعة المكثفة  $\sigma_1$  ، و استنتج سعة المكثفة  $\sigma_2$ 



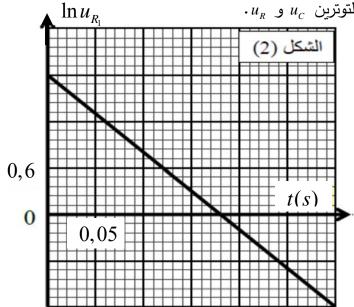
 $\frac{dq}{dt} + \alpha q = 0$  : الشكل الشكل

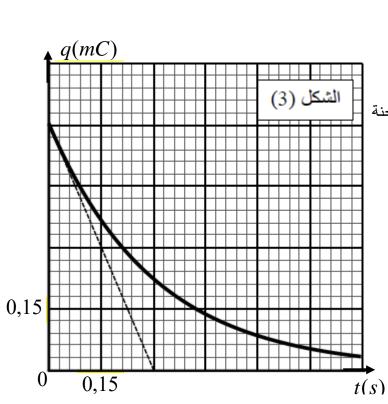
. حيث  $\alpha$  ثابت يطلب تعيين عبارته بدلالة مميزات الدارة



حيث $Q_0$ الشحنة الأعظمية المخزنة في المكثفة.

$$q=f(t)$$
 الشكل – 3 يوضح المنحنى البياني  $q=f(t)$  لتطور شحنة .  $t$  المكثفة  $q$  خلال الزمن


 $Q_0$  جد قيمة


.  $\tau_2$  ثابت الزمن

 $oldsymbol{N}$ استنتج قيمة الناقل الأومى .  $oldsymbol{R}$ 

.  $\xi_{c}(t)$  اكتب العبارة الزمنية للطاقة المخزنة في المكثفة 4

 $t_2 = 0.6s$  ,  $t_1 = 0s$  :حسب قيمتها عند اللحظتين – 5



