
### البيان 02:

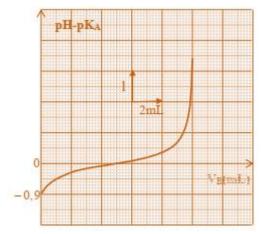
$$\frac{\tau_f^2}{1 - \tau_f} = f\left(\frac{1}{C}\right)$$



نستخرج المعادلة البيانية: نصف البيان أولا

$$\frac{\tau_f^2}{1-\tau_f} = a\left(\frac{1}{C}\right)\dots\dots(1)$$

نثبت العبارة:


(العلاقة 12 في ملف براهين الوحدة 04)

$$K_a = \frac{\tau_f^2 C}{1 - \tau_f}$$

بضرب الطرفين في القيمة  $\frac{1}{c}$  فنحصل على:

$$rac{ au_f^2}{1- au_f}=K_a\left(rac{1}{C}
ight)......(2)$$
بمطابقة $K_a=a$  نجد  $(2)$  نجد  $(1)$ 

### $pH - pKa = f(V_R)$



#### تعيين <u>ال pKa:</u>

$$pH - pKa = -0,9$$
$$pKa = pH + 0,9$$

. قبل المعايرة pH

تعيين الحجم المضاف عند التكافؤ:

عند نقطة نصف التكافؤ:

pH = pKapH - pKa = 0

نعين الحجم عند نقطة نصف التكافؤ بيأنيا ثم نقوم بضرب القيمة في 2.

### تمرين (بكالوريا 2018 علوم تجريبية الجزء2)

نحضر محلول (S) بحل n=0,01mol من حمض الميثانويك النقي في حجم V=1 من الماء . قيست ناقليته النوعية في

 $\delta = 0.049S$ .  $m^{-1}$  فوجدت  $5^{\circ}$ C

1/ أ- أنشئ جدول تقدم التفاعل الحادث بين الحمض و الماء . بـ أحسب التركيز المولى  $C_A$  للمحلول (S) وبين أن حمض /2 الميثانوك ضعيف.

pH المحلول (S) المحلول (p

رمعايرة حجم  $V_A=10ml$  من المحلول (S) معايرة حجم /2 .  $C_B$  تركيزه المولي ( $Na^+,OH^-$ ) ميدروكسيد الصوديوم الممثل  $pH-pKa=f(V_B)$ الممثل مكنت القياسات من رسم البيان اعلاه

أ- أحسب قيمة pKa الثنائية  $(HCOOH/HCOO^{-})$  $C_R$  ب جد التركيز المولى

### البيان <u>03:</u>

$$\frac{1}{C} = f\left(\frac{\tau_f^2}{1 - \tau_f}\right)$$

| 4   | 1 | (r | no | 1-1 | L  | _  |    |                |     |     |   |
|-----|---|----|----|-----|----|----|----|----------------|-----|-----|---|
| 200 |   | '  |    |     | 1  |    |    | 1              | /   |     |   |
| 150 |   |    |    |     |    | /  | Z  |                |     |     |   |
| 100 |   |    |    | /   | Z  |    |    |                |     |     |   |
| 50  |   | /  | _  |     |    |    | 1  | r <sup>2</sup> | ×   | 10- | 3 |
| (   |   | 3. | 15 | 6.  | 30 | 9. | 45 | 12             | 2,6 |     | - |

نستخرج المعادلة البيانية: نصف البيان أولا

$$\frac{1}{C} = a \frac{\tau_f^2}{1 - \tau_f} \dots \dots \dots (1)$$

نثبت العبارة:

( العلاقة 12 في ملف براهين الوحدة 04 )

$$K_a = \frac{\tau_f^2 C}{1 - \tau_f}$$

بضرب الطرفين في القيمة  $\frac{1}{K_{\alpha}C}$  فنحصل على :

$$\frac{1}{C} = \left(\frac{1}{K_a}\right) \frac{\tau_f^2}{1 - \tau_f} \dots \dots (2)$$

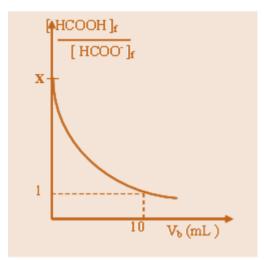
 $K_a = \frac{1}{a}$  بمطابقة (1) مع

تمرين ( بكالوريا 2009 علوم تجريبية ) محلول مائي لحمض الإيثانويك تركيزه المولي C مقدرا

- 1- أ/ اكتب معادلة التفاعل بين حمض الإيثانويك و الماء . ب/ أنشئ جدولا لتقدم التفاعل الكيميائي السابق.
  - .  $\tau_f$ و C بدلالة [  $H_3O^+$  ] بدلالة 2
- ب/ بين أنه يمكن كتابة عبارة ثابت الحموضة  $\mathbf{K}_{\mathrm{a}}$  للثنائية : HCOOH/HCOO على الشكل (HCOOH)

$$K_a = \frac{\tau_f^2 C}{1 - \tau_f}$$

نجد قيمة  $au_{
m f}$  للتحول من أجل تراكيز مولية مختلفة m C و ندون النتائج في الحده ل التالي :


|                                    |      | •    | رن ،— <i>ي</i> | ٠ - ن عي ، |
|------------------------------------|------|------|----------------|------------|
| $C(mol/L)\times 10^{-2}$           | 17.8 | 8.77 | 1.78           | 1.08       |
| $\tau \left(\times 10^{-2}\right)$ | 1.0  | 1.4  | 3.1            | 4.0        |
| $A = \frac{1}{C} (L/mol)$          |      |      |                |            |
| $B = \frac{\tau^2}{1-\tau}$        |      |      |                |            |

A = f(B) أ/ أكمل الجدول السابق، ومثل البيان: ج/ استنتج ثابت الحموضة للثنائية (-HCOOH/HCOO)

### البيان <u>04:</u>

$$\frac{[HCOOH]_f}{[HCOO^-]_f} = f(V_B)$$

 $\mathbf{X}$ عدد صحيح موجب



# حساب التركيز المولي <u>C</u> نعلم أن:

$$[HCOOH]_f = C_a - [H_3O^+]_f$$
  
 $[HCOO^-]_f = [H_3O^+]_f$ 

 $[HCOOH]_f = C_a - [HCOO^-]_f$  $C_a = [HCOOH]_f + [HCOO^-]_{f....(1)}$   $c_a$  المحلول (S) قيمة ال صداب يوبي عبد المحلول (S)

$$C_a = [CH_3COOH] + [CH_3COO^-]$$

$$[CH_3COO^-] = [H_3O^+] = 10^{-pH} mol/L$$

$$[CH_3COO^-]$$

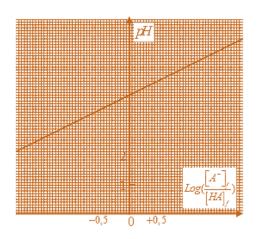
$$\log \frac{[CH_3COO^{-}]}{[CH_3COOH]} = X$$

$$\Rightarrow \frac{[CH_3COO^{-}]}{[CH_3COH]} = 10^{X}$$

$$\Rightarrow [CH_3COOH] = \frac{[CH_3COO^-]}{10^X}$$
$$= [CH_3COO^-]10^{-X}mol/L$$

تمرين (بكالوريا 2009 علوم تجريبية بتصرف) في حصة الأعمال التطبيقية ، طلب الأستاذ من تلامذته تحضير محاليل مائية لأحد الاحماض الصلبة HA بتراكيز مولية مختلفة و قياس pH كل محلول عند درجة الحرارة

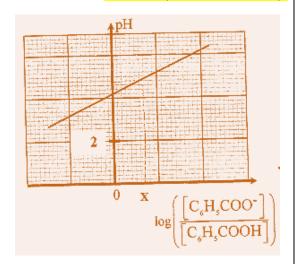
و رسم البيان 
$$pH = f (Log \frac{\left[A^{-}\right]_{f}}{\left[AH\right]_{f}})$$
 فتحصلوا 25°C


على البيان (الشكل -).

1 - أعط بروتوكولا تجريبيا توضح فيه كيفية تحضير V الصلب تركيزه C و حجمه AH

بدلالة  $_{HA}$  المحلول المائى للحمض  $_{HA}$  بدلالة  $_{HA}$  $\cdot (HA/A^{-})$  للثنائية  $pK_{a}$ 

 $(H\!A/A^-)$  الثنائية  $pK_a$  الثابت عدد بيانيا قيمة الثابت  $pK_a$  الثنائية ثم استنتج صيغة الحمض HA من الجدول التالى:


| $pK_a$ | الثنائية                                             |
|--------|------------------------------------------------------|
| 3 ,8   | ( <i>HCO</i> 0 <i>H</i> / <i>HCOO</i> <sup>-</sup> ) |
| 4,87   | $(CH_3COOH/CH_3COO^-)$                               |
| 4,2    | $(C_6H_5COOH/C_6H_5COO^-)$                           |



 $\frac{[HCOOH]_f}{[HCOO^-]_f} = X$  $\Rightarrow [HCOOH]_f = X[HCOO^-]_f = X10^{-pH}....(2)$  $c_a = X 1 \mathbf{0}^{-pH} + \mathbf{1} \mathbf{0}^{-pH}$  : بتعویض  $c_a = X \mathbf{1} \mathbf{0}^{-pH}$ تعيين الحجم المضاف عند التكافئ  $rac{[HCOOH]_f}{[HCOO^-]_f}=1$  عند نقطة نصف التكافؤ يكون

 $V_{E/2}=10ml$ : يقابلها بالإسقاط على محور الفواصل  $\Rightarrow V_E = 20ml$ 

ولدينا قبل بداية المعايرة



تعيين ال <u>pK</u> المعادلة البيانية:

$$pH = a \log \left( \frac{[CH_3COO^-]}{[CH_3COOH]} \right) + b \dots \dots (1)$$

المعادلة الرياضية:

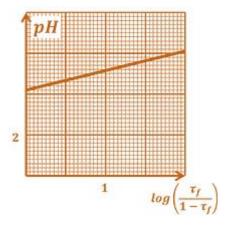
$${
m pH} = pK_a + {
m log}igg(rac{[\mathit{CH}_3\mathit{COO}^-]}{[\mathit{CH}_3\mathit{COOH}]}igg) \dots \dots (2)$$
بمطابقة نجد :  $(1)$  مع  $(2)$  نجد

$$pK_a = b$$
(نقطة التقاطع مع محور التراتيب)

### تمرین ( بکالوریا 2016 ریاضی + تقنی ریاضی)

HA عضوي قارورة على محلول  $S_0$  احمض عضوي  $C_0$  تركيزه المولى

- 1- أ- اكتب معادلة انحلال الحمض HA في الماء.
  - ب \_ أنشئ جدول التقدم لهذا التفاعل.
- جـ اكتب عبارة النسبة النهائية τ لتقدم التفاعل بدلالة .  $C_0$  المحلول و pH
  - د بين أن pH المحلول  $S_0$  يعطى بالعبارة


$$pH = pKa + \log\left(\frac{ au_f}{1- au_f}\right)$$
التالية:

لغرض تحديد التركيز المولي  $C_0$  لهذا الحمض -2 والتعرف على صيغته ، نحضر مجموعة من المحاليل ممددة ومختلفة التراكيز المولية انطلاقا من المحلول قياس الـpH لكل محلول سمح برسم بيان الدالة .  $S_0$ 

$$pH = f\left(log\left(\frac{\tau_f}{1-\tau_f}\right)\right)$$

- أ- اكتب عبارة الدالة الموافقة للمنحنى البياني.
- $(HA/A^{-})$  استنتج ثابت الحموضة Ka للثنائية
  - ج- حدد النوع الكيميائي الغالب في محلول للحمض .  $au_f=0.4$  من اجل HA
- د- أعطى قياس لاحد المحاليل الممددة بـ 160 مرة  $C_0$  القيمة pH=4.2 ، احسب التركيز المولى
  - ه ـ يبين الجدول التالي قيم الثابت pKa لبعض HA تعرف على الحمض الثنائيات ( $HA/A^-$ ). تعرف الموجود في القارورة.

| $pK_a$ | الثنائية                                              |
|--------|-------------------------------------------------------|
| 3 ,8   | ( <i>HCO</i> 0 <i>H</i> / <i>HCO</i> 0 <sup>-</sup> ) |
| 4,8    | $(CH_3COOH/CH_3COO^-)$                                |
| 4,2    | $(C_6H_5COOH/C_6H_5COO^-)$                            |



## $pK_a$ تعيين ال نكنب المعادلة البيانية

$$\mathrm{pH} = a \log \left( \frac{\tau_f}{1 - \tau_f} \right) + b \dots \dots (1)$$

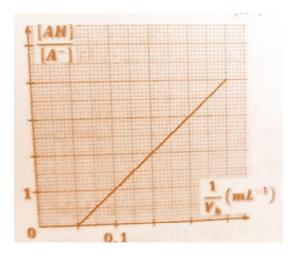
المعادلة الرياضية:

$$pH = pK_a + \log\left(\frac{\tau_f}{1 - \tau_f}\right) \dots \dots (2)$$

( العلاقة 17 في ملف براهين الوحدة 04 )

$$a=1$$
  $pK_a=b$ ( انقطة التقاطع مع محور التراتيب)

حساب C من أجل قيمة ل c حساب


$$\tau_f = \frac{10^{-pH}}{C}$$

$$\Rightarrow C = \frac{10^{-pH}}{\tau_f}$$

في حالة التمديد نحسب التركيز المولى الابتدائي قبل التمديد باستعمال  $F: rac{c_0}{c} = F$  معامل التمديد .

### البيان07:

$$\frac{[AH]}{[A^-]} = f\left(\frac{1}{V_B}\right)$$



# تعيين الحجم المضاف عند التكافئ: عند نقطة نصف التكافؤ:

$$\frac{[AH]}{[A^-]}=1$$

 $rac{[AH]}{[A^-]} = 1$ مثلا : البيان أعلاه : بالإسقاط

$$\frac{1}{V_{BE/2}} = 0, 1mL^{-1} \Rightarrow V_{BE/2} = \frac{1}{0, 1}$$
$$\Rightarrow V_{BE/2} = 10mL$$
$$\Rightarrow V_{BE} = 2V_{BE/2} = 20mL$$