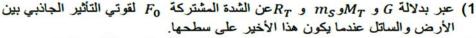

المستوى: السنة الأولى ج.م.ع. تكنولوجيا السنة الدراسية:2024/2023

من اعداد الأستاذ: م تيسي الموضوع: سلسلة مراجعة في الوحدة 8 الوحدة 08: انكسار الضوء

التمرين 01:

كرتان حديديتان لهما نفس الكتلة m=650 موضوعتان على سطح أفقى تفصل بينهما المسافة

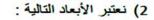


- $g = 9.8 \, N/kg$: أحسب شدة ثقل إحدى الكرتين . نعطى شدة الجانبية
 - 2) ما شدة قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟
- 3) لماذا عندما ندرس توازن إحدى الكرتين لا نأخذ بعين الاعتبار قوة الجذب العام المطبقة من طرف إحدى الكرتين على الأخرى ؟

التمرين 02:

في المعلم المركزي الأرضي ، ينجز ساتل كتلته $m_{\rm S}$ مدارا دائريا نصف قطره $r_{\rm s}$ ومركزه هو مركز الأرض التي R_T ونصف قطرها . M_T

 $F = \frac{F_0}{16}$ عندما يكون h الذي يوجد عليه الساتل عندما يكون (3

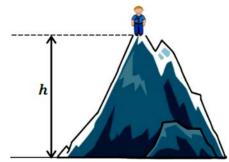

1) شخص ثقله $q_0=637\,N$ في مكان على سطح الأرض حيث شدة الجانبية هي $q_0=637\,N$ صعد نفس الشخص إلى قمة . P = 636,2 N جبل الذي علو ها h ، فصارت شدة ثقله هي

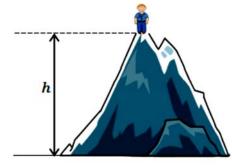
أ- أحسب m كتلة هذا الشخص .

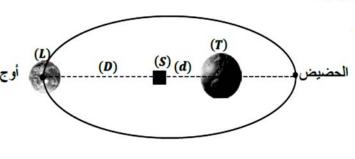
. R مشدة الثقل بدلالة m و g_0 و h و ونصف قطر الأرض P ب-جد عبارة

$$h= \mathrm{R}\left(\sqrt{rac{P_0}{P}}-1
ight)$$
 : استنتج أن عبارة h تكتب على الشكل التالي h أحسب قيمة h .

قطر كرية دم حمراء 7µm ، طول شجرة 3,7m ، نصف قطر كوكب المريخ . 3400 km


جد رتبة الأعداد السابقة .


التمرين 04:

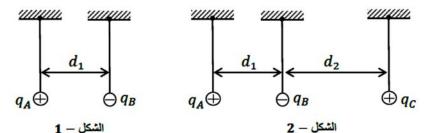

المسافة المتوسطة بين مركز القمر (L) و مركز الارض (T) تتغير من 356375Km إلى سكورك بين الأرض و القمر عندما يصل القمر إلى $m_S=1000 Kg$ يتحرك بين الأرض و القمر عندما يصل القمر إلى أوجه تكون مراكز كل من الارض و القمر و الجسم (S) على نفس الاستقامة

d = 2000 Km لتكن d = 2000 Km المسافة بين سطح الارض و مركز الجسم

D المسافة بين سطح القمر و مركز الجسم (S) (أنظر الشكل) .

- 1) ذكر بنص قانون الذب العام.
- . (S) حدد مميز ات $\vec{F}_{T/S}$ قوة الجذب العام المطبقة من الأرض على الجسم (2)
- $\vec{F}_{T/S}$ مثل على الشكل بعد نقله إلى ورقة الإجابة شعاع القوة $\vec{F}_{T/S}$ بسنتمترين ما السلم المستعمل ?
 - . $g=rac{GM_T}{(R_T+{
 m d})^2}$ هو: (S) هون عبارة g شدة الجاذبية الأرضية عند موضع الجسم ($g=\frac{GM_T}{(R_T+{
 m d})^2}$
- عند موضع الجسم (S) ، اكتب عبارة النسبة $\frac{g}{g_0}$ بدلالة g_0 حيث g_0 شدة الجاذبية الأرضية على سطح الارض
 - . $g=5,67\mathrm{N/Kg}$ علما آن g_0 و استنتج قيمة و استنتج قيمة (6
 - الجسم (d_0) نسمي المسافة d_0 بين سطح الأرض و الجسم (d_0) حيث تكون للقوة المطبقة من طرف الأرض على الجسم (d_0) و للقوة المطبقة من طرف القمر على الجسم (d_0) نفس الشدة، احسب قيمة d_0 .

معطيات:

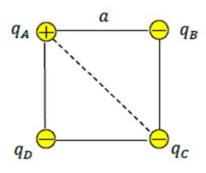

كتلة الأرض $M_L=7{,}35 imes10^{22}~kg$ ، كتلة القمر $R_T=6400~km$ ، $M_T=6 imes10^{24}~kg$ ، نصف قطر القمر $G=6.67 imes10^{-11}~N.m^2/~kg^2$. $R_L=1{,}73 imes10^6~m$

التمرين 05:

 $q_A=10$ في نقطتين A و B نثبت بواسطة خيطين عازلين و غير قابلين للإمتطاط كرتين فو لاذيتين مشحونتين حيث $q_A=10$ و $q_B=-10$ و $q_B=-10$ (أنظر الشكل) .

- 1) مثل القوى الكهربائية التي تتأثر بها الكرية B . ثم أحسب شدتها؟
 - 2) هل تتأثر الكرية A بقوة ؟ . مثلها بدقة ،ثم استنتج شدتها.
- 3) نقرب من الكرية الفولاذية B كرية فولانية أخرى C مشحونة حيث C علما أن الكريات الفولاذية الثلاثة تكون على استقامة واحدة و تبعد الكرية D عن الكرية D بمسافة D بمسافة D (الشكل D). أ- مثل في هذه الحالة القوى الكهربائية التي تتأثر بها الكرية D ، ثم استنتج شدتها D بمصلة هذه القوى.
 - ج- على أي مسافة يجب أن نثبت الكرية C كي تصبح محصلة القوى التي تتأثر بها B معدومة.

 $K=9 \times 10^9 N.m^2/C^2$ يعطى: ملاحظة والكريات الفو الفو الفو الفوادية شحن نقطية والمحطة الفوادية الفو


التمرين 06:

مربع طول ضلعه a=10cm كما في الشكل حيث : $D\cdot C\cdot B\cdot A$ موجع عند رؤوسه a=10cm

 $|q_A| = |q_B| = |q_C| = |q_D| = 6\mu C$

- q_c مثل على الشكل جميع القوى المؤثرة على الشحنة
- q_D و q_B و مطبقة على q_C من طرف الشحنات q_A و q_B و q_B .

 $K = 9 \times 10^9 \, SI$: يعطى

