المسبب حرا فاريتيا					
العلامة		عناصر الإجابة – الموضوع الأول			
مجموع	مجزأة				
		الجزء الأول: (13 نقطة)			
		التمرين الأول: (06 نقاط)			
0,25	0,25	 تعريف النواة المشعة: نواة غير مستقرة تتفكك تلقائيا لتعطي نواة بنتا أكثر استقرارا مع اصدار 			
		اشعاعات.			
0,50	0,25×2	2. تركيب النواة $Z=30$: $Z=30$ بروتون ، $Z=30$ نيترون $N=A-Z=32$ بروتون ، 2			
	0,25	يتعريف الجسيم eta^+ : الكترون موجب e_{+1}^0 (بوزيترون)			
	0,25	$^1_1P ightarrow ^1_1n + ^0_1e$ [الية إصداره: يتحول البروتون 1_1P إلى نيترون 1_0 وفق المعادلة:			
	0,25×2	$ ho_{30}^{62} { m Zn} ightarrow {}^{62}_{29} { m Cu} + {}^{0}_{+1} e$ يمعادلتا التفكك النووي: $ ho_{30}^{62} { m Cu} + {}^{0}_{+1} e$			
,		$\begin{cases} 62 = A \\ 30 = Z + 1 \end{cases} \Rightarrow \begin{cases} 62 = A \\ Z = 29 \end{cases}$ حسب قانوني الانحفاظ لصودي:			
	0,25×2	$^{62}_{29}$ Cu $\rightarrow ^{62}_{28}$ Ni $+ ^{0}_{+1}e$			
	0,25%2	$egin{cases} 62=A \ >> \ Z=28 \end{cases} \Rightarrow egin{cases} 62=A \ Z=28 \end{cases}$ حسب قانوني الانحفاظ لصودي:			
2,00	0,50	3.3. تمثيل التحولين النووبين: 34			
0,25	0,25	$E=m\cdot c^2$ ثانيا: 1. علاقة التكافؤ: كتلة طاقة لأينشتاين: $E=m\cdot c^2$			
0,75	0,25	2. تعريف طاقة الربط لنواة $_{2}^{A}N_{c}$ وحساب قيمتها بالنسبة للنواة $_{30}^{62}$: \sim هي الطاقة اللازم تقديمها للنواة $_{2}^{A}N_{c}^{A}$ الساكنة لتفكيكها إلى نويات متفرقة وساكنة. \sim هي الطاقة المتحررة خلال تشكل نواة $_{2}^{A}N_{c}^{A}$ ساكنة انطلاقا من نويات متفرقة وساكنة. \sim حساب قيمتها:			
	0,25	$E_{\ell}({}_{z}^{A}X) = \left[\left(Zm_{p} + (A - Z)m_{n} - m({}_{z}^{A}X) \right) \times c^{2} \right]$			
	0.26	12 / 62 72 \ \ \[\(\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

 $E_{\ell}({}_{30}^{62}Zn) = [(30 \times 1,0073 + (62 - 30) \times 1,0087 - 61,9179] \times 931,5 = 539,8 \,\text{MeV}$

0,25

الشعبة: علوم تجريبية		بة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية		
		3. النواة الأكثر استقرارا من بين النواتين Zn 62 Cu و 29 Cu:		
0.75	0,25	$\frac{E_{t}\binom{62}{30}Zn}{A} = \frac{539.8}{62} = 8.70 \text{MeV/nuc}$		
0,75	0,25	$rac{E_{\ell}inom{62}{30}Zn}{A}$ $\langle rac{E_{\ell}inom{62}{29}Cu}{A}$:المقارنة		
	0,25	النواة الأكثر استقرارا هي النواة Cu أو20 Cu		
0,25	0,25	ثالثًا: 1. يفضل استخدام هذا النظير في العلاج لقصر مدة حياته.		
0,25	0,25	$A(t)=A_0e^{-\lambda t}$.2. قانون النشاط الاشعاعي: $A(t)=A_0e^{-\lambda t}$		
	0,25	$A_0 = \lambda N_0 = \frac{\ln 2}{t_{1/2}} \times \frac{m_0}{M} N_A$:قيمة النشاط الاشعاعي الابتدائي:		
1,00	0,25	$A_0 = \frac{\ln 2}{9,186 \times 3600} \times \frac{10 \times 10^{-6}}{62} \times 6,02 \times 10^{23} = 2,03 \times 10^{12} \mathrm{Bq}$		
1,00	0,25	$t_1 = \frac{-t_{1/2}}{\ln 2} \ln \frac{A(t_1)}{A_0}$: t_1 استنتاج اللحظة		
	0,25	$t_1 = \frac{-9,186}{\ln 2} \ln 0, 6 = 6,8 $ heures		
		التمرين الثاني: (07 نقاط)		
0,50		المرحلة الأولى: التزلج على المستوي المائل AB		
	0,50	1.المرجع المناسب لدراسة حركة الجملة: المرجع السطحي الأرضى.		
	0,25×3	A = f R الجملة: R الجملة: R الجملة: R		
0,75		\overline{P} α B		
	0,75	3. نص القانون الثاني لنيوتن: في مرجع غاليلي، المجموع الشعاعي للقوى الخارجية المطبقة		
0,75		على جملة مادية يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتها.		
		•		
1,25	0,25+0,5	4. المعادلة التفاضلية التي تحققها فاصلة مركز العطالة:		
	0,23+0,3	$\sum \overline{F_{ext}} = m\overline{a_G} \Rightarrow \overline{P} + \overline{R} + \overline{f} = m\overline{a_G}$ نظبيق القانون الثاني لنيوتن:		
	0,5	$P\sin\alpha - f = ma_G \Rightarrow \frac{d^2x}{dt^2} = g\sin\alpha - \frac{f}{m}$ بالإسقاط على محور الحركة:		
0,75	0,50 0,25	$g\sin\alpha - \frac{f}{m} = a_G \Rightarrow f = m(g\sin\alpha - a_G)$: (f) شدة قوة الاحتكاك .5		
	,,_,	$f = 60(9.8 \times 0.5 - 4) = 54$ N		

الشعبة: علوم تجريبية		دورة: 2024 اختبار مادة: العلوم الفيزيائية		الإجابة النموذجية لموضوع امتحان شهادة البكالوريا				
7		- 9- 13		المرحلة الثانية: دراسة القفز فوق بركة ماء				
	0,25	Ec	$c_0 = \frac{1}{2} m v_0^2$	1. قيمة السرعة الابتدائية:				
1,00	0,25	$ u_0$	$_{0}=\sqrt{\frac{2Ec_{0}}{m}}$					
	0,50	$v_0 = \sqrt{\frac{2 \times 1,9 \times 10^3}{60}} = 7,96 \text{m} \cdot \text{s}^{-1}$						
	0,25×4	0,1547	$3x_G^2 - x_G - 0,5 =$	1.2. فاصلة نقطة السقوط على الأرض $x_c: 0$				
2,0	0,25×2		<u>ف</u> وض	ومنه: $x'_G = -0.47m$ ، $x_G = 6.9m$ مر				
	0,5			2.2. المتزلج يجتاز البركة				
				$x_{G} > 6m$ التبرير				
				الجزء الثاني: (07 نقاط)				
				التمرين التجريبي: (07 نقاط)				
0,75				أولا:				
0,70				1. دلالات المعلومات:				
	0,25×3			النقاوة، $M:$ الكتلة المولية الجزئية، $d:$ كثافة P				
		رنكتفي بـ 03 إجابات)	المجملة للحمض	إشارة الخطر (بيكتوغرام)، HCl الصيغة الجزيئية				
	0,25×2	c_0	$=\frac{10d \cdot P}{M} = \frac{10}{100}$	$\frac{\times 1,19 \times 37}{36.5} = 12,06 mol \cdot L^{-1}$ التركيز المولي: 1.2				
1,00	0,25×2	$c_1V=c_0V_0$	$\rightarrow V_0 = \frac{c_1 V}{c_0} = \frac{c_1 V}{c_0}$	$\frac{0,482 \times 500}{12.06} \simeq 20 mL$: 2.2. حجم المحلول الأم				

الشعبة: علوم تجريبية		اختبار مادة: العلوم الفيزيائية	دورة: 2024	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا				
	0,25			3. البروتوكول التجريبي:الاحتياطات الأمنية: قفازات، مئزر، نظارات				
1,00	0,25	ة مص، طارحة		- الوسائل: - حوجلة عيارية 500 mL، ماصة عيارية mL (المحلول التجاري ((s ₀))، ماء مقطر خطوات العمل:				
	0,5		$20mL$ من المحلول التجاري بواسطة الماصة؛ $20mL$ ب الحجم المأخوذ في الحوجلة العيارية بها قليل من الماء المقطر؛ $\frac{3}{4}$ حجم الحوجلة ونسدها ونرجها؛ $\frac{3}{4}$ حجم العوجلة ونسدها مترجها؛ $\frac{3}{4}$ على محلول متجانس بالماء المقطر الى خط العيار $500mL$ ، نرج الحوجلة للحصول على محلول متجانس					
0,25	0,25	تانيا: 1. تصنيف التحول من حيث مدة حدوثه: تحول بطيء يستغرق عدة دقائق						
0,50	0,25×2	ر. الثنائيتان Ox/Red المشاركتان في النفاعل: الثنائيتان Al3+/Al : Ox/Red و H3O+/H2						
1,0	0,25 0,25×2 0,25	$t_{1/2}=1,4min$ و الزمن اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية. $t_{1/2}$ هو الزمن اللازم لبلوغ تقدم التفاعل نصف قيمته النهائية. $t_{1/2}=\frac{\left[\mathrm{Al}^{3+}\right]_f}{2}=5 imes10^{-2}mol\cdot L^{-1}$ مع التبرير $t_{1/2}=1,4min$						
0,50	0,25	$t=0$ عند اللحظة Al^{3+} عند اللحظة $V_{vol}(Al^{3+}) = \frac{1}{V_1} \frac{dn(Al^{3+})}{dt} = \frac{d[Al^{3+}]}{dt}$ $v_{vol}(Al^{3+}) = a_0 = \frac{10 \times 10^{-2}}{2} = 5 \times 10^{-2} \ mol \cdot L^{-1} \cdot min^{-1}$						
1,25	0,25	المتفاعلات.		1.5. العوامل الحركية: درجة حرارة الوسط التفاعلي				
1,20	0,25 0,25		2.5. الإجابة الصحيحة: أ) يتناقص 1 _{1/2} زمن نصف التفاعل ب) تزداد السرعة الحجمية لتشكل ⁺ Al ³					

الشعبة: علوم تجريبية		اختبار مادة: العلوم الفيزيائية	دورة: 2024	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا
	0,25×2	[Al**]×10-2 mal.L-1	(min)	.3.5
0,25	0,25	.)" اعل الكيميائي بين الألمنيوم	طماطم، خل، الناتجة عن التف	6. تبرير صحة العبارة " يحذر المختصون من است خاصة إذا كانت ساخنة وتحتوي على حمض (التبرير: تسرب شوارد الألمنيوم إلى جسم الانسان والحمض، والرفع في درجة الحرارة يؤدي إلى زيادة سلبا على صحة الانسان.
0,50	0,50	ق الألمنيوم.	مي ثم تغليفه بور	7. الحل المقترح: تغليف الأطعمة بورق طهي صد

العلامة				
مجموع	مجزأة	عناصر الإجابة - الموضوع الثاني		
		الْجزء الأول: (13 نقطة) الْجزء الأول: (13 نقطة)		
	0,25	التمرين الأول: (06 نقاط) التمرين الأول: (6 نقاط)		
0,50		$(\widetilde{F}_{\!\scriptscriptstyle LIP})$ د مرجع الدراسة وتمثيل القوة : $\widetilde{F}_{\!\scriptscriptstyle LIP}$ د مرجع الدراسة وتمثيل القوة : 1.		
	0,25	المرجع المناسب لدراسة حركة المركبة هو المرجع المركزي القمري.		
	0,25	$\sum \vec{F}_{ex} = m\vec{a} \Rightarrow \vec{F}_{LIA} = m\vec{a}$: عبارة سرعة المركبة الفضائية بتطبيق القانون الثاني لنيوتن $\sum \vec{F}_{ex} = m\vec{a} \Rightarrow \vec{F}_{LIA} = m\vec{a}$		
1,25	0,25×3	$F_{LIA}=m\cdot a\Rightarrow rac{G.m.M_L}{\left(R_L+h ight)^2}=m.rac{v^2}{\left(R_L+h ight)}\Rightarrow v=\sqrt{rac{G.M_L}{\left(R_L+h ight)}}$ بالإسقاط وفق الناظم:		
	0,25	$v = \sqrt{\frac{6,67 \times 10^{-11} \times 7,34 \times 10^{22}}{(1,73 + 0.11) \times 10^6}} = 1631,18 \text{ m} \cdot \text{s}^{-1}$		
	0,5	$T_A = \frac{2\pi(R_L + h)}{v}$ 3. عبارة دور المركبة الفضائية:		
0,75	0,25	$T_{A} = \frac{2\pi(1,73+0.11)\times10^{6}}{1631,18} = 7087,54s = 1,97h$		
0,50	0,5	$T_{A} \neq 27,32$ المركبة ليست مستقرة بالنسبة للقمر ، لأن دورها يختلف عن دور القمر $T_{A} \neq 27,32$		
	0,25	1.5. الفرضية الصحيحة هي الفرضية (أ)		

وم تجريبية	الشعبة: عا	الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية				
	0,25	1.2.5. المعادلة التفاضلية التي تحققها سرعة مركز عطالة المطرقة:				
		بتطبيق القانون الثاني لنيوتن على مركز عطالة المطرقة في المرجع السطحي القمري:				
	0,25	$\sum \vec{F}_{ccl} = m\vec{a}_G \Rightarrow \vec{P} = m\vec{a}_G$				
3,00	0,25×2	$a_G = -g_L \Rightarrow \frac{dv}{dt} = -g_L$ بالإسقاط وفق محور الحركة:				
	0,50	$v_z(t) = -g_L t$: المعادلتان الزمنيتان: 2.2.5				
	0,50	$z(t) = -\frac{1}{2}g_Lt^2 + h$				
	0,25×2	$t = \sqrt{\frac{2(h-h_1)}{\sigma_1}}$: lund l				
	0,25	$t = \sqrt{\frac{2 \times (1,5 - 0,05)}{1,62}} = 1,34s$				
		التمرين التّاني: (07 نقاط) (R				
		اولا: الوشيعة بدون نواة حديدية				
0,75	0,25×3	E u_b E u_b u_b u_b				
		i (L,r)				
		2. إنبات المعادلة التفاضلية للدارة الكهربائية:				
	0,25×2	$u_R + u_b = E \implies R.i + r.i + L \frac{di}{dt} = E$:بتطبیق قانون جمع التوترات				
1,00	0,25	$(R+r)\cdot\frac{u_R}{R}+L\cdot\frac{1}{R}\cdot\frac{du_R}{dt}=E$: نجد $i=\frac{u_R}{R}$: بأخذ				
	0,25	$\frac{du_R}{dt} + \frac{(R+r)}{L} \cdot u_R = \frac{R}{L} \cdot E : $ منه				
		au 3. استنتاج عبارة الثابتين A و $ au$:				
	0,25	من: $\frac{du_R(t)}{dt} = \frac{A}{\tau}e^{-\frac{1}{\tau}t}$ نجد : $u_R(t) = A\left(1 - e^{-\frac{1}{\tau}t}\right)$ نبد				
	0,25	: بالنشر نجد: $\frac{A}{\tau}e^{-\frac{1}{\tau}t} + \frac{(R+r)}{L} + A\left(1 - e^{-\frac{1}{\tau}t}\right) = \frac{R}{L} \cdot E$				
1,75	0,25	$\left(\frac{A}{\tau} - \frac{(R+r)}{L} \cdot A\right) \cdot e^{-\frac{t}{\tau}} + \frac{(R+r)}{L} \cdot A - \frac{R}{L} \cdot E = 0$				
	0,25	$\begin{cases} \left(\frac{A}{\tau} - \frac{(R+r)}{L} . A\right) = 0 \\ \frac{(R+r)}{L} . A - \frac{R}{L} . E = 0 \end{cases} \Rightarrow \begin{cases} \tau = \frac{L}{R+r} \\ A = \frac{E.R}{R+r} = R.I_0 = U_{R\max} \end{cases}$				
	0,25	, –				
	0,25×2	المدلول الفيزيائي: τ ثابت الزمن وهو الزمن اللازم لبلوغ قيمة $u_R(t)$ % 63% من قيمته العظمى.				
		التوتر الأعظمي بين طرفي الناقل الأومي : التوتر الأعظمي بين طرفي الناقل الأومي				

الشعبة: علوم تجريبية		الإجابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية					
		4. التحليل البعدي لثابت 7 المميز للدارة وتحديد قيمته بيانيا:					
		[t]					
0,75	0,25	$\tau = \frac{L}{R+r} \Rightarrow [\tau] = \frac{[L]}{[R]} = \frac{[\dot{x}][t]}{[\dot{x}]} = [t] = T$					
		τ له بُعْدُ الزّمن					
	0,25	$u_{\scriptscriptstyle R}(au)\!=\!0,63\cdot U_{\scriptscriptstyle Rmax}=\!2,1$ تحدید قیمته بیانیا: $u_{\scriptscriptstyle R}(au)\!=\!0,63\cdot U_{\scriptscriptstyle Rmax}$					
	0,25	au=1,2ms : من البيان (1) نقرأ					
		5. التحديد البياني للمجال الزمني لكل من النظامين الانتقالي والدائم:					
	0,25	$(t \in [0;7]s$ (نقبل الإجابة من أجل $t \in [0;6]s$)					
	0,25	(t>7s النظام الدائــم: $t>6s$ (تقبل الإجابة					
1,00	,	$u_R(t)$ يتطور التيار $i(t)$ بنفس كيفية تطور التوتر $i(t)=rac{1}{R}u_R(t)$ حسب قانون أوم					
	0,50	٨٠ أي تؤخر الوشيعة ظهور التيار في الدارة، فتزداد شدة التيار الكهربائي لفترة قصيرة من قيمة					
		معدومة في اللحظة $t=0$ إلى قيمة عظمى I_0 (نظام انتقالي) ثم تحافظ على نفس القيمة (نظام					
		دائم).					
		6. تعيين قيمة المقدار $\dfrac{di(t)}{dt}$ أثناء النظام الدائم:					
0,50	0,25×2	$rac{di(t)}{dt}$ = 0 منه: $i(\infty)$ = I_0 التيار ثابتة $i(\infty)$					
		ثانيا: الوشيعة مزودة بنواة حديدية					
0,25	0,25	1. المقدار المتوقع تغيره هو ذاتية الوشيعة.					
		2. تحديد بيانيا الثابت '7 المميز للدارة الجديدة:					
0,50	0,25×2	$ au'=2,4ms$: من البيان $u_R(au)=0,63.U_{Rmax}=2,1{ m V}$					
		3. تأثير النواة الحديدية على ذاتية الوشيعة: L					
0,50	0,25	$ au=rac{L}{R+r}$ $ au'> au\Rightarrow L'>L$ خاتیہ الوشیعہ: $ au'=rac{L'}{R+r}$ $ au'=rac{L'}{R+r}$					
	0,25	عند إدخال نواة حديدية في قلب وشيعة تزداد الذاتية L للوشيعة وبالتالي يزداد ثابت الزمن.					
		الجزء الثاني: (07 نقاط)					
0,25		التمرين التجريبي: (07 نقاط)					
	0,25	1. احتياطات الأمن والوقاية: مئزر، قفازات، نظارات					

الشعبة: علوم تجريبية		جابة النموذجية لموضوع امتحان شهادة البكالوريا دورة: 2024 اختبار مادة: العلوم الفيزيائية					
		2. أسماء عناصر التركيب التجريبي:					
		① فتحة خروج الماء ② مبرد ③ فتحة دخول الماء					
0,75	0,25×2	 ④ بالون (دورق كروي) ⑤ مسخن كهربائي ⑥ مقعد ذو رافعة 					
	0,25	نضع المبرد شاقوليا على البالون لتجنب ضياع المادة حيث تتكاثف الأبخرة على جدران المبرد					
	0.25	وترتد للوسط التفاعلي.					
	0,25	 دور حمض الكبريت: وسيط يسرع التفاعل 					
0,50	0,25	دور حجر الخفان: تنظيم درجة حرارة الوسط التفاعلي في البالون					
0,25	0,25	 دور العنصر ©: إبعاد المسخن الكهربائي عن البالون عند الحاجة لذلك. 					
0,25	0,25	$C_5H_{12}O(l)+C_2H_4O_2(l)=C_7H_{14}O_2(l)+H_2O(l)$ 5. المعادلة الكيميائية:					
		1.6. كمية المادة الابتدائية للمتفاعلين:					
		التجرية 01:					
	0,25	$n_i(alcool) = \frac{m}{M} = \frac{\rho V_1}{M} = \frac{0.81 \times 20}{88} = 0.18 mol$					
	0,25	$n_i(acide) = \frac{m}{M} = \frac{\rho V_2}{M} = \frac{1,05 \times 10}{60} = 0,18 mol$					
	0,25	النجرية 02:					
	,,,,,	$n_i(alcool) = \frac{m}{M} = \frac{\rho V_1}{M} = \frac{0.81 \times 20}{88} \approx 0.18 mol$					
	0,25	$n_l(acide) = \frac{m}{M} = \frac{\rho V_2}{M} = \frac{1,05 \times 25}{60} \approx 0,44 mol$					
	0,25	1.2.6. تحديد صنف الكحول واستنتاج قيمة نسبة التقدم النهائي للتفاعل:					
5,00	0,25	 ١٠٤٠ تعديد عملك التعول والمسلم عبد عبد المسلم المهامي المسلم المهامي المسلم المهامي المسلم المهامي المسلم المهام المهام					
	0,25	$ au$ ن صنعت المتحول. محول اولي والمزيج متكافئ في كمية المادة. منه: $0,67= au_f=0$					
		$r=rac{n_{exp}}{}$ عن مردود النحول:					
		$r = \frac{1}{n_{max}}$					
	0,25	$n_{exp} = \frac{\rho V}{M} = \frac{0.87 \times 16}{130} \approx 0.11 mol$					
	0,25	$n_{max} = 0.18mol$					
	0,25	$r = \frac{0.11}{0.18} \approx 0.61 \rightarrow r = 61\%$					
	0,25×2	$0,18$ اثناء تحضير الأستر يحدث ضياع طفيف للمادة بسبب التبخر وكذلك عند تنقية $r\langle au_f $					
	0,25 \ 2	واستخلاص الأستر.					
	l	.,					

الشعبة: علوم تجريبية		ة: العلوم الفيزيائية	2024 اختبار ماد	ة البكالوريا دورة:	ة لموضوع امتحان شهادة	الإجابة النموذجية
	0,25				$\tau_f' = \frac{x_f}{x_{\text{max}}} : \tau_f' \stackrel{\text{a}}{=}$	3.6. حساب قیم
						جدول التقدم:
			$C_5H_{12}O +$	$-C_2H_4O_2=$	$=C_7H_{14}O_2$	+H ₂ O
	0,25×2	ح. ابتدائية	0,18mol	0,44mol	0	0
	,,,	ح. انتقالية	0,18 - x	0,44 - x	x	x
		ح. نهائية	$0.18 - x_f$	$0,44 - x_f$	Xf	xf
	0,25×3 0,25	$k = \frac{x_f^2}{(0,18 - x_f)(0,44 - x_f)} = 4$ $3x_f^2 - 2,48x_f + 0,317 = 0$ $x_f = 0.16mol ; x_f' = 0.67mol$ $\tau_f' = \frac{0,16}{0.18} \approx 0,89$				تابت التوازن: (مرفوضة)
	-,	0,18				
	0,25					4.6. الاستتناج:
	ح عند استخدام مزيج غير متكافئ في كمية المادة.					تزداد قيمة ٢٠٠٠